Abstract
Purpose
To compare breath-hold (BH) with navigated free-breathing (FB) 3D late gadolinium enhancement cardiac MRI (LGE-CMR)
Materials and methods
Fifty-one patients were retrospectively included (34 ischaemic cardiomyopathy, 14 non-ischaemic cardiomyopathy, three discarded). BH and FB 3D phase sensitive inversion recovery sequences were performed at 3T. FB datasets were reformatted into normal resolution (FB-NR, 1.46x1.46x10mm) and high resolution (FB-HR, isotropic 0.91-mm voxels). Scar mass, scar edge sharpness (SES), SNR and CNR were compared using paired-samples t-test, Pearson correlation and Bland-Altman analysis.
Results
Scar mass was similar in BH and FB-NR (mean ± SD: 15.5±18.0 g vs. 15.5±16.9 g, p=0.997), with good correlation (r=0.953), and no bias (mean difference ± SD: 0.00±5.47 g). FB-NR significantly overestimated scar mass compared with FB-HR (15.5±16.9 g vs 14.4±15.6 g; p=0.007). FB-NR and FB-HR correlated well (r=0.988), but Bland-Altman demonstrated systematic bias (1.15±2.84 g). SES was similar in BH and FB-NR (p=0.947), but significantly higher in FB-HR than FB-NR (p<0.01). SNR and CNR were lower in BH than FB-NR (p<0.01), and lower in FB-HR than FB-NR (p<0.01).
Conclusion
Navigated free-breathing 3D LGE-CMR allows reliable scar mass quantification comparable to breath-hold. During free-breathing, spatial resolution can be increased resulting in improved sharpness and reduced scar mass.
Key Points
• Navigated free-breathing 3D late gadolinium enhancement is reliable for myocardial scar quantification.
• High-resolution 3D late gadolinium enhancement increases scar sharpness
• Ischaemic and non-ischaemic cardiomyopathy patients can be imaged using free-breathing LGE CMR.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.