Αναζήτηση αυτού του ιστολογίου

Σάββατο 2 Ιουνίου 2018

Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice

Abstract

Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.



The effect of anthropogenic activities on the phosphorus-buffering intensity of the two contrasting rivers in northern China

Abstract

The phosphorus (P)-buffering ability of suspended particulate matter (SPM) from the Ziya River Mainstream (ZRM) and the Luanhe River (LR) of northern China was investigated in this study. Forty samples of SPM from the ZRM and LR were collected in October and November of 2016. The ZRM has slow flow and poor water quality, while the LR has fast flow and reasonably good water quality. Under a scanning electron microscope, the SPM from the ZRM had a more complex microstructure than that from the LR, perhaps because of the slower flow and heavier pollution in the ZRM. P fractions in both SPM and water samples were determined using standard measurement and testing program methods. The equilibrium P concentration was used to determine the influence of SPM on soluble reactive P (SRP) concentrations. These SRP fractions were used to evaluate the P-buffering intensity of the two rivers. Differences in SPM microstructure resulted in the SPM from ZRM having a stronger P-buffering ability than the LR, making SPM an effective vector for SRP. Anthropogenic activities likely contributed to the differences in both microstructures of the SPM and P-buffering intensity of the rivers. A conceptual model was developed to show how anthropogenic activities influence the P-buffering intensity of the two rivers. As far as we know, this is the first time that the P-buffering intensity has been compared between two rivers that have been severely impacted by anthropogenic activities. Our findings provide an important reference for similar rivers worldwide.



Is skewed income distribution good for environmental quality? A comparative analysis among selected BRICS countries

Abstract

A large number of studies have examined the linkage between income inequality and environmental quality at the individual country levels. This study attempts to examine the linkage between the two factors for the individual BRICS economies from a comparative perspective, which is scarce in the literature. It examines the selected countries (Brazil, India, China and South Africa) by endogenising the patterns of primary energy consumption (coal use and petroleum use), total primary energy consumption, economic growth, and urbanisation as key determining factors in CO2 emission function. The long-run results based on ARDL bounds testing revealed that income inequality leads to increase in CO2 emissions for Brazil, India and China, while the same factor leads to reduction in CO2 emissions for South Africa. However, it observes that while coal use increases CO2 emissions for India, China and South Africa, it has no effect for Brazil. In contrast, the use of petroleum products contributes to CO2 emissions in Brazil, while the use of the same surprisingly results in reduction of carbon emissions in South Africa, India and China. The findings suggest that given the significance of income inequality in environmental pollution, the policy makers in these emerging economies have to take into consideration the role of income inequality, while designing the energy policy to achieve environmental sustainability.



Reply to the letter to the editor by Swarthout et al. (2018): Comments for Mertens et al. (2018), Glyphosate, a chelating agent—relevant for ecological risk assessment?



Phthalate exposure as a risk factor for hypertension

Abstract

Phthalates are ubiquitous in environment. Hypertension is a major risk factor for cardiovascular diseases. Phthalate exposure is associated with hypertension in multiple studies. This review aims to summarize the scientific literature on associations between phthalate exposure and hypertension and discuss the mechanisms in the relationship. We identified and reviewed original articles published to March 2018, using PubMed and Web of Science to search the terms "phthalate(s)," "phthalic acid," "blood pressure," "high blood pressure," "hypertension," "prehypertension," and "cardiovascular disease." Findings were summarized based on the relevance to the themes, including presentation of main phthalates and their major metabolites as well as associations of phthalate exposure with blood pressure in epidemiological and experimental studies. We identified ten population-based investigations and five toxicological experiments. Epidemiological data underscored a possible correlation between phthalate exposure and hypertension in adults, whereas individual study in children stands on the opposite. Experimental studies mainly targeted the increasing effect of phthalates on blood pressure. This review suggested some underlying mechanisms of phthalate-associated hypertension. Considering the current evidence, phthalate might be risk factors of hypertension. However, the effect of phthalate exposure in early life on blood pressure in later life or adulthood is still unclear. Well-designed longitudinal and molecular mechanism studies are indispensable.



Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater

Abstract

Spent magnesia (MgO)-carbon refractory bricks were repurposed as a permeable reactive barrier reactive media to treat a nickel (5 mg l−1)- and cobalt (0.3 mg l−1)-contaminated groundwater. MgO has been used for decades as a heavy metal precipitating agent as it hydrates and buffers the pH in a range of 8.5–10 associated with the minimum solubility of various divalent metals. The contaminated groundwater site's conditions are typical of contaminated neutral drainage with a pH of 6 as well as high concentrations of iron (220 mg l−1) and sulphates (2500 mg l−1). Using synthetic contaminated water, batch and small-scale column tests were performed to determine the treatment efficiency and longevity. The increase and stabilization of the pH at 10 observed during the tests are associated with the hydration and dissolution of the MgO and promoted the removal not only of a significant proportion of the contaminants but also of iron. During the column test, this accumulation of precipitates over time clogged and passivated the MgO resulting in a loss of chemical performance (pH lowering, metal breakthrough) after 210 pore volumes of filtration. Precipitation also affected the hydraulic conductivity values which dropped from 2.3·10−3 to 4.2·10−4 m s−1 at the end of test. Saturation indices and XRD analyses suggest the precipitates formed are likely composed of goethite as well as iron, cobalt and nickel hydroxides. Recycled MgO-C refractory bricks were demonstrated to be an efficient reactive material for the removal of Co and Ni, but careful considerations should be taken of the potential clogging and passivation phenomena given particular physicochemical conditions.



Soft Ethics: Its Application to the General Data Protection Regulation and Its Dual Advantage



Anthropogenic CO 2 emissions from a megacity in the Yangtze River Delta of China

Abstract

Anthropogenic CO2 emissions from cities represent a major source contributing to the global atmospheric CO2 burden. Here, we examined the enhancement of atmospheric CO2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO2 emissions. We simulated the CO2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO2 enhancement of 23.5~49.7 μmol mol−1, 21.4~52.4 μmol mol−1, 28.1~55.4 μmol mol−1, and 29.5~42.4 μmol mol−1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO2 enhancement compared to the other sectors of YRD. The average anthropogenic CO2 emission in 2014 was 0.162 (± 0.005) mg m−2 s−1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m−2 s−1) from the EDGAR emission database.



Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource

Abstract

Coffee is perhaps one of the most vital ingredients in humans' daily life in modern world. However, this causes the production of million tons of relevant wastes, i.e., plastic cups, aluminum capsules, coffee chaff (silver skin), and spent coffee grounds (SCG), all thrown untreated into landfills. It is estimated that 1 kg of instant coffee generates around 2 kg of wet SCG; a relatively unique organic waste stream, with little to no contamination, separated directly in the source by the coffee shops. The produced waste has been under researchers' microscope as a useful feedstock for a number of promising applications. SCG is considered a valuable, nutrients rich source of bioactive compounds (e.g., phenolics, flavonoids, carotenoids, lipids, chlorogenic and protocatechuic acid, melanoidins, diterpenes, xanthines, vitamin precursors, etc.) and a useful resource material in other processes (e.g., soil improver and compost, heavy metals absorbent, biochar, biodiesel, pellets, cosmetics, food, and deodorization products). This paper aims to provide a holistic approach for the SCG waste management, highlighting a series of processes and applications in environmental solutions, food industry, and agricultural sector. Thus, the latest developments and approaches of SCG waste management are reviewed and discussed.



Nanostructured catalysts applied to degrade atrazine in aqueous phase by heterogeneous photo-Fenton process

Abstract

SBA-15 and KIT-6 materials have been synthesized and modified with iron salts by the wet impregnation method with different metal loadings. The different mesostructures obtained were characterized by N2 adsorption–desorption at 77 K, X-ray diffraction, temperature-programmed reduction, and ultraviolet–visible spectroscopy. These iron-containing mesostructured materials have been successfully tested for the heterogeneous photo-Fenton degradation of aqueous solutions of dangerous herbicides, such as atrazine, using UV–visible light irradiation, at room temperature and close to neutral pH. The results showed that the Fe/SBA-15 (10%) and Fe/KIT-6 (5%) catalysts exhibited the highest activities. However, the Fe/KIT-6 (5%) catalyst with minor Fe loading than Fe/SBA-15 (10%) presented a higher degradation of atrazine (above 98% in a reaction time of 240 min). Therefore, the interconnectivity of the cage-like mesopores had an important influence on the catalytic activity, favoring probably mass-transfer effects. Thus, the high performance of these materials indicates that the heterogeneous via of photo-Fenton process can also be efficiently employed to treat wastewaters containing pollutants such as herbicides, in order to reduce them to simplest and less toxic molecules.



Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants

Abstract

The number of publications on photocatalytic bismuth vanadate-based materials is constantly increasing. Indeed, bismuth vanadate is gaining stronger interest in the photochemical community since it is a solar-driven photocatalyst. However, the efficiency of BiVO4-based photocatalyst under sunlight is questionable: in most of the studies investigating the photodegradation of organic pollutants, only few works identify the by-products and evaluate the real efficiency of BiVO4-based materials. This short review aims to (i) present briefly the principles of photocatalysis and define the photocatalytic efficiency and (ii) discuss the formation of reactive species involved in the photocatalytic degradation process of pollutants and thus the corresponding photodegradation mechanism could be determined. All these points are developed in a comprehensive discussion by focusing especially on pure, doped, and composite BiVO4. Therefore, this review exhibits a critical overview on different BiVO4-based photocatalytic systems with their real efficiency. This is a necessary knowledge for potential implementation of BiVO4 materials in environmental applications at larger scale than laboratory conditions.



Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China

Abstract

Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17–18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.



Boosting the catalytic activity of natural magnetite for wet peroxide oxidation

Abstract

This work explores the modification of naturally occurring magnetite by controlled oxidation (200–400 °C, air atmosphere) and reduction (300–600 °C, H2 atmosphere) treatments with the aim of boosting its activity in CWPO. The resulting materials were fully characterized by XRD, XPS, TGA, TPR, SEM, and magnetization measurements, allowing to confirm the development of core-shell type structures. The magnetite core of the solid remained unchanged upon the treatment whereas the Fe(II)/Fe(III) ratio of the shell was modified (e.g. 0.42, 0.11 and 0.63 values were calculated for pristine Fe3O4, Fe3O4-O400, and Fe3O4-R400, respectively). The performance of the catalysts was tested in the CWPO of sulfamethoxazole (SMX) (5 mg L−1) under ambient conditions and circumneutral pH (pH0 = 5), using the stoichiometric dose of H2O2 (25 mg L−1) and a catalyst load of 1 g L−1. The key role of the ferrous species on the mineral shell was evidenced. Whereas the oxidation of magnetite led to significantly slower degradation rates of the pollutant, its reduction gave rise to a dramatic increase, achieving the complete removal of SMX in 1.5 h reaction time with the optimum catalyst (Fe3O4-R400) compared to the 3.5 h required with the pristine mineral. A reaction mechanism was proposed for SMX degradation, and a kinetic equation based on the Eley-Rideal model was accordingly developed. This model successfully fitted the experimental results. The stability of Fe3O4-R400 was evaluated upon five sequential runs. Finally, the versatility of the catalytic system was proved in real environmentally relevant water matrices.



CFD modeling of a UV-A LED baffled flat-plate photoreactor for environment applications: a mining wastewater case

Abstract

The use of ultraviolet light in photoreactors for wastewater treatment has become popular as an alternative of known chemical oxidative substances. UV LED light represents cheaper, robust, and versatile alternative to traditional UV lamps. In this study, it was designed and evaluated a photoreactor with an approach of chemical fluid dynamics (CFD) and experimental validation. The evaluation consisted of (1) CFD velocity profile analysis, (2) characterization of the average light distribution with potassium ferrioxalate actinometry, (3) degradation of a typical recalcitrant metallic cyanocomplex Fe(CN)63−, and (4) scavenger effect analysis in the photodegradation using potassium persulfate. Actinometrical essay concluded that the system was able to receive 1.93 μE/s. The reactor operated under turbulent regime and best result for Fe(CN)63− degradation was obtained at 4 h of operation, using 5-W UV-A LEDs, with pH ~ 7 and 10 mM de S2O82−. Baffled photoreactor demonstrated to be useful for this type of illumination and wastewater treatment.



A pre-operative planning framework for global registration of laparoscopic ultrasound to CT images

Abstract

Purpose

Laparoscopic ultrasound (LUS) enhances the safety of laparoscopic liver resection by enabling real-time imaging of internal structures such as vessels. However, LUS probes can be difficult to use, and many tumours are iso-echoic and hence are not visible. Registration of LUS to a pre-operative CT or MR scan has been proposed as a method of image guidance. However, the field of view of the probe is very small compared to the whole liver, making the registration task challenging and dependent on a very accurate initialisation.

Methods

We propose the use of a subject-specific planning framework that provides information on which anatomical liver regions it is possible to acquire vascular data that is unique enough for a globally optimal initial registration. Vessel-based rigid registration on different areas of the pre-operative CT vascular tree is used in order to evaluate predicted accuracy and reliability.

Results

The planning framework is tested on one porcine subject where we have taken 5 independent sweeps of LUS data from different sections of the liver. Target registration error of vessel branching points was used to measure accuracy. Global registration based on vessel centrelines is applied to the 5 datasets. In 3 out of 5 cases registration is successful and in agreement with the planning. Further tests with a CT scan under abdominal insufflation show that the framework can provide valuable information in all of the 5 cases.

Conclusions

We have introduced a planning framework that can guide the surgeon on how much LUS data to collect in order to provide a reliable globally unique registration without the need for an initial manual alignment. This could potentially improve the usability of these methods in clinic.



3D MRI in Musculoskeletal Imaging: Current and Future Applications

Abstract

Purpose of Review

This article addresses current clinical applications, recent literature, and potential future applications of 3-dimensional magnetic resonance imaging (3D MRI) for musculoskeletal (MSK) applications.

Recent Findings

The main advantage of 3D MRI over standard 2-dimensional MRI is its ability to reduce partial volume averaging artifacts and create multiplanar reconstruction (MPRs) in any plane with any slice thickness from a single high-resolution isotropic acquisition. 3D MRI acquisitions are particularly useful for the evaluation of articular cartilage, which is prone to volume averaging artifacts, and for the assessment of longitudinally coursing structures such as peripheral nerves and tendons, which are better visualized with non-orthogonal MPRs. 3D MRI is also useful for surface and volumetric analysis of bone and cartilage for preoperative and longitudinal assessments. Current research is focused on decreasing acquisition times and automating segmentation through machine learning, thus overcoming some of the current limitations of 3D MRI and providing new applications for this technique.

Summary

3D MRI is widely used in MSK imaging today, and its use is likely to continue to increase in the future, with recent advancements focused on accelerated acquisition techniques and quantitative imaging.



The Emerging Role of 7 Tesla MRI in Musculoskeletal Imaging

Abstract

Purpose of Review

To describe the emergent role of ultra-high field (UHF) MR with respect to musculoskeletal MRI applications.

Recent Findings

With the recent US Federal Drug Administration (FDA) and European Union (EU) approval of ultra-high field (UHF) MRI below 8T for clinical use, and the availability of clinical 7T MRI systems, there is a rising interest in the potential clinical and research applications in musculoskeletal MRI.

Summary

With increases in field strength and SNR gains resulting in sharper and higher spatial resolution MRI images, there is increasing interest in UHF MRI. Although there are challenges and limitations in UHF, there are many new and unique musculoskeletal MR applications that UHF excels at such as morphological imaging, bone micro-architecture evaluation, biochemical imaging techniques such gagCEST, UTE/ZTE, T2 mapping, T2* mapping, T1ρ mapping, and multi-nuclear imaging and spectroscopy/imaging techniques with 23Na and 31P. The goal of this review is to highlight some of these recent findings in musculoskeletal MRI applications at UHF.



MR Imaging of Chondrogenic Tumors: Update on Select Imaging Challenges

Abstract

Purpose of Review

This review article discusses the updated World Health Classification of chondrogenic skeletal tumors and the role of conventional and advanced magnetic resonance (MR) imaging in the evaluation of chondrogenic skeletal lesions with emphasis on select diagnostic dilemmas.

Recent Findings

The majority of benign chondrogenic skeletal lesions have typical radiographic and MR features. Conventional MR imaging sequences can be helpful in the distinction of tumor-like lesions from chondrogenic tumors, and the evaluation of anatomic extent, particularly with regard to the detection of soft tissue masses associated with a chondrosarcoma (CS). Benign, atypical, and malignant chondrogenic lesions can have overlapping features on diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping although dynamic contrast-enhanced (DCE) sequences can be helpful in the characterization of chondrogenic tumors as benign or malignant. Patients with multiple chondrogenic tumor conditions or syndromes are predisposed to developing CS and extra-skeletal malignancies, and as such, a small subset may benefit from imaging surveillance.

Summary

The majority of chondrogenic skeletal lesions can be characterized confidently on imaging. In the small subset of intermediate and malignant chondrogenic lesions with overlapping imaging and pathological features, a multidisciplinary approach should be used.



MRI of Acute Abdominal and Pelvic Non-obstetric Conditions in Pregnancy

Abstract

Purpose of Review

The evaluation of abdominal and pelvic pain in the pregnant patient presents unique challenges due to altered physiology and implications of radiation exposure on the fetus. In many instances, a radiologist must consider the potential risk of fetal injury from ionizing radiation and maintaining diagnostic quality imaging. This article will focus on the role of MR imaging and its applications in a variety of acute abdomen and pelvic non-obstetric conditions potentially affecting the pregnant patient.

Recent Findings

Non-contrast MR imaging is routinely employed in the presence of an initial equivocal ultrasound. However, MR is playing an increasingly more important role in the imaging of the pregnant patient, potentially surpassing the utility of conventional imaging techniques.

Summary

As radiologists become more comfortable interpretating abdominal and pelvic MRI, MR will play a bigger role in imaging the pregnant patient in the emergency room, in the years to come.



CT Imaging of Cardiac Trauma

Abstract

Cardiac injury can occur in the setting of blunt and penetrating trauma resulting in significantly adverse clinical outcomes. While the clinical presentation is variable and computed tomographic (CT) imaging is rarely performed to specifically evaluate for cardiac injury, the ability to recognize the findings of cardiac injury on CT examinations performed for thoracic trauma is essential to avoid misdiagnosis and direct potentially life-saving intervention. This article reviews the direct and indirect CT findings of cardiac injury.



A systematic review and meta-analysis of the prevalence and phenotype of adult-onset atopic dermatitis

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): Harrison H. Lee, Kevin R. Patel, Vivek Singam, Supriya Rastogi, Jonathan I. Silverberg
BackgroundPrevious studies found conflicting results about whether atopic dermatitis (AD) begins in adulthood.ObjectiveTo determine rates, predictors and phenotypical differences of adult-onset AD.MethodsA systematic review was performed of all published observational studies in MEDLINE, EMBASE, GREAT, LILACS, Cochrane Library, and Scopus that analyzed the age of AD onset beyond 10 years of age. Two reviewers performed study title/abstract review and data abstraction. Pooled meta-analysis of the proportion of adult-onset AD was performed using random-effects weighting (I2=99.3%).ResultsOverall, 25 studies met inclusion criteria. Seventeen studies reported age of AD-onset past 16 years and had sufficient data for meta-analysis. The pooled proportion (95% CI) of adult-onset AD was 26.1% (16.5-37.2%). Similar results were found in sensitivity analyses by diagnostic method for AD, study region, and gender. Phenotypical differences were observed across studies for adult vs. child onset AD, including higher rates of foot dermatitis and personal history of atopy, but lower rates of flexural lesions and other signs and symptoms.LimitationsCharacteristics of adult- vs. child-onset AD were not commonly reported.ConclusionsAD is not only a disease of childhood. One in 4 adults with AD report adult-onset disease. Adult-onset AD was associated with distinct clinical characteristics.



Folliculitis Decalvans: Effectiveness of Therapies and Prognostic Factors In A Multicenter Series of 60 Patients With Long-Term Follow-Up

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): L. Miguel-Gómez, A.R. Rodrigues-Barata, A. Molina-Ruiz, A. Martorell-Calatayud, P. Fernández-Crehuet, R. Grimalt, D. Barco, S. Arias-Santiago, C. Serrano-Falcón, F.M. Camacho, D. Saceda-Corralo, P. Jaén-Olasolo, S. Vañó-Galván




REPLY to MS#JAAD-D-18-00380

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): Samir Arbache




Reply to: comment on “Liquid nitrogen cryotherapy for chronic recalcitrant interdigital candidiasis of toe-spaces – an uncontrolled pilot study”

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): Vijay Zawar, Manoj Pawar, R Raghunatha Reddy, Antonio Chuh




About melanocyte activation in idiopathic guttate hypomelanosis by 5-fluorouracil tattooing

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): Carlos Gustavo Wambier




Influence of age and marital status on stage at diagnosis and survival of patients with Merkel cell carcinoma: a SEER based cohort study

Publication date: Available online 2 June 2018
Source:Journal of the American Academy of Dermatology
Author(s): Michael A. Liu, Jannett Nguyen, Jane A. Driver




Bayesian inference for the genetic control of water deficit tolerance in spring wheat by stochastic search variable selection

Abstract

Drought is the main abiotic stress seriously influencing wheat production. Information about the inheritance of drought tolerance is necessary to determine the most appropriate strategy to develop tolerant cultivars and populations. In this study, generation means analysis to identify the genetic effects controlling grain yield inheritance in water deficit and normal conditions was considered as a model selection problem in a Bayesian framework. Stochastic search variable selection (SSVS) was applied to identify the most important genetic effects and the best fitted models using different generations obtained from two crosses applying two water regimes in two growing seasons. The SSVS is used to evaluate the effect of each variable on the dependent variable via posterior variable inclusion probabilities. The model with the highest posterior probability is selected as the best model. In this study, the grain yield was controlled by the main effects (additive and non-additive effects) and epistatic. The results demonstrate that breeding methods such as recurrent selection and subsequent pedigree method and hybrid production can be useful to improve grain yield.



Applicability of radon emanometry in lithologically discontinuous sites contaminated by organic chemicals

Abstract

The applicability of radon (222Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-m2 area, following a regular sampling design with a 20-m2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.



An automated liver tumour segmentation from abdominal CT scans for hepatic surgical planning

Abstract

Purpose

Segmentation of liver tumours is an important part of the 3D visualisation of the liver anatomy for surgical planning. The spatial relationship between tumours and other structures inside the liver forms the basis of preoperative surgical risk assessment. However, the automatic segmentation of liver tumours from abdominal CT scans is riddled with challenges. Tumours located at the border of the liver impose a big challenge as the surrounding tissues could have similar intensities.

Methods

In this work, we introduce a fully automated liver tumour segmentation approach in contrast-enhanced CT datasets. The method is a multi-stage technique which starts with contrast enhancement of the tumours using anisotropic filtering, followed by adaptive thresholding to extract the initial mask of the tumours from an identified liver region of interest. Localised level set-based active contours are used to extend the mask to the tumour boundaries.

Results

The proposed method is validated on the IRCAD database with pathologies that offer highly variable and complex liver tumours. The results are compared quantitatively to the ground truth, which is delineated by experts. We achieved an average dice similarity coefficient of 75% over all patients with liver tumours in the database with overall absolute relative volume difference of 11%. This is comparable to other recent works, which include semiautomated methods, although they were validated on different datasets.

Conclusions

The proposed approach aims to segment tumours inside the liver envelope automatically with a level of accuracy adequate for its use as a tool for surgical planning using abdominal CT images. The approach will be validated on larger datasets in the future.



Main controlling factors and forecasting models of lead accumulation in earthworms based on low-level lead-contaminated soils

Abstract

To explore the main controlling factors in soil and build a predictive model between the lead concentrations in earthworms (Pbearthworm) and the soil physicochemical parameters, 13 soils with low level of lead contamination were used to conduct toxicity experiments using earthworms. The results indicated that a relatively high bioaccumulation factor appeared in the soils with low pH values. The lead concentrations between earthworms and soils after log transformation had a significantly positive correlation (R2 = 0.46, P < 0.0001, n = 39). Stepwise multiple linear regression analysis derived a fitting empirical model between Pbearthworm and the soil physicochemical properties: log(Pbearthworm) = 0.96log(Pbsoil) − 0.74log(OC) − 0.22pH + 0.95, (R2 = 0.66, n = 39). Furthermore, path analysis confirmed that the Pb concentrations in the soil (Pbsoil), soil pH, and soil organic carbon (OC) were the primary controlling factors of Pbearthworm with high pathway parameters (0.71, − 0.51, and − 0.49, respectively). The predictive model based on Pbearthworm in a nationwide range of soils with low-level lead contamination could provide a reference for the establishment of safety thresholds in Pb-contaminated soils from the perspective of soil-animal systems.



Association of phthalate exposure with anthropometric indices and blood pressure in first-grade children

Abstract

We aimed to assess the relationship of urine phthalate metabolite concentrations with anthropometric indices, and blood pressure in first-grade children. We detected 11 phthalate metabolites in urine and estimated anthropometric indices, including skinfold measurements, waist circumference (WC), and body mass index (BMI) in 276 children aged 6–8 years. Multivariate linear regression models were used to assess the associations between urinary phthalate metabolite levels, and anthropometric and blood pressure indices in a gender-specific manner. In boys, a 1-ng/mL increase in monobenzyl phthalate (MBzP) concentration was associated with a 0.027-cm decrease in the skinfold measurement (95% confidence interval [CI], − 0.053 to 0.001), whereas a 1-ng/mL increase in mono-ethyl-phthalate (MEP) concentration was associated with a 0.016-mm Hg decrease in systolic blood pressure (95% CI, − 0.031 to 0.001). MBzP, mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and MEOHP concentrations were also inversely associated with WC. However, in girls, MEP concentrations were positively associated with chest measurements, but were inversely associated with WC. A 1-ng/mL increase in monomethyl phthalate concentrations was associated with a 0.039-cm increase in skinfold measurements (95% CI, 0.002 to 0.076), whereas a 1-ng/mL increase in MECPP concentrations was associated with a 0.050 cm decrease in skinfold measurements (95% CI, − 0.095 to − 0.005). In this exploratory, cross-sectional analysis, we identified various interesting associations between different phthalate metabolite levels and anthropometric indices, which suggest that some of phthalate metabolite should be considered in addition to the prevalence rates of overweight and obesity.



Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment

Abstract

This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.



Evaluating the effects of phytoremediation with biochar additions on soil nitrogen mineralization enzymes and fungi

Abstract

Phytoremediation with biochar addition might alleviate pollutant toxicity to soil microorganism. It is uncertain to what extent biochar addition rate could affect activities of enzymes related to soil nitrogen (N) mineralization and alter fungal community under the phytoremediation. This study aimed to reveal the effects of Medicago sativa L. (alfalfa) phytoremediation, alone or with biochar additions, on soil protease and chitinase and fungal community and link the responses of microbial parameters with biochar addition rates. The alfalfa phytoremediation enhanced soil protease activities, and relative to the phytoremediation alone, biochar additions had inconsistent impacts on the corresponding functional gene abundances. Compared with the blank control, alfalfa phytoremediation, alone or with biochar additions, increased fungal biomass and community richness estimators. Moreover, relative to the phytoremediation alone, the relative abundances of phylum Zygomycota were also increased by biochar additions. The whole soil fungal community was not significantly changed by the alfalfa phytoremediation alone, but was indeed changed by alfalfa phytoremediation with 3.0% (w/w) or 6.0% biochar addition. This study suggested that alfalfa phytoremediation could enhance N mineralization enzyme activities and that biochar addition rates affected the responses of fungal community to the alfalfa phytoremediation.



Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos

Abstract

Per- and polyfluoroalkyl substances (PFAS) are synthetic surfactants with a wide variety of applications; however, due to their stability, they are particularly resistant to degradation and, as such, are classed as persistent organic pollutants. Perfluorooctane sulfonate (PFOS) is one such PFAS that is still detectable in a range of different environmental settings, despite its use now being regulated in numerous countries. Elevated levels of PFOS have been detected in various avian species, and the impact of this on avian health is of interest when determining acceptable levels of PFOS in the environment. Due to its similarities to naturally occurring fatty acids, PFOS has potential to disrupt a range of biological pathways, particularly those associated with lipid metabolism, and this has been shown in various species. In this study, we have investigated how in ovo exposure to environmentally relevant levels of PFOS affects expression of genes involved in lipid metabolism of developing chicken embryos. We have found a broad suppression of transcription of genes involved in fatty acid oxidation and PPAR-mediated transcription with more significant effects apparent at lower doses of PFOS. These results highlight the need for more research investigating the biological impacts of low levels of PFAS to properly inform environmental policy governing their regulation.



Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption

Abstract

Modified Hummer's method has been used in this study to synthesize graphene oxide (GO) solution that was utilized for the fabrication of three-dimensional (3D) graphene sponges and their subsequent functionalization through a low-cost and facile vapor-based surface enhancement approach. The functionalized 3D-graphene sponge is an excellent absorbent, which can remove more than 3300 wt.% of crude oil (calculated with respect to the original sorbent mass). The functionalization of the obtained graphene sponges with trichloro (1H,1H,2H,2H-perfluorooctyl)silane enhanced their wettability properties due to the super-hydrophobic nature of the resulting materials characterized by the contact angles in water greater than 150°. Furthermore, their elastic compression modulus (estimated by conducting a series of compression tests) was about 22.3 kPa. The equilibrium modeling of the oil removal process, which was performed by plotting Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms, confirmed the properties of the fabricated 3D graphene sponges as exceptional absorbents for crude and diesel oil, which could be attributed to the oleophilic nature of graphene. Moreover, the obtained 3D graphene sponges could be regenerated via heat treatment, which was conducted to release the adsorbed species. After five adsorption-desorption cycles, the sorption capacity of the produced 3D graphene sponges towards crude oil reached 95% of the initial value.



Sequential extraction of chromium, molybdenum, and vanadium in basic oxygen furnace slags

Abstract

Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1–F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CH3COOH + HCl, F3 Na2EDTA + NH2OH·HCl, and F4 HF + HNO3 + H2O2), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8–107.9% and V, 112.6–87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.



Julius Caesar and the numbers

Abstract

This article offers an interpretation of a controversial aspect of Frege's The Foundations of Arithmetic, the so-called Julius Caesar problem. Frege raises the Caesar problem against proposed purely logical definitions for '0', 'successor', and 'number', and also against a proposed definition for 'direction' as applied to lines in geometry. Dummett and other interpreters have seen in Frege's criticism a demanding requirement on such definitions, often put by saying that such definitions must provide a criterion of identity of a certain kind (for numbers or for linear directions). These interpretations are criticized and an alternative interpretation is defended. The Caesar problem is that the proposed definitions fail to well-define 'number' and 'direction'. That is, the proposed definitions, even when taken together with the extra-definitional facts (such as that Caesar is not a number and that England is not a direction), fail to fix unique semantic extensions for 'number' and 'direction', and thereby fail to fix unique truth-values for sentences like 'Caesar is a number' and 'England is a direction'. A minor modification of the criticized definitions well-defines '0', 'successor' and 'number', thereby avoiding the Caesar problem as Frege understands it, but without providing any criterion of number identity in the usual sense.



Nódulos múltiples hipopigmentados adquiridos en la cara anterior del tórax

Publication date: Available online 1 June 2018
Source:Actas Dermo-Sifiliográficas
Author(s): M. Quintana-Codina, G. Melé-Ninot, C. Santonja




Psoriasis ungueal tratada con certolizumab pegol en pacientes con artritis psoriásica: conclusión preliminar

Publication date: Available online 1 June 2018
Source:Actas Dermo-Sifiliográficas
Author(s): M. Mazzeo, A. Dattola, M.V. Cannizzaro, L. Bianchi




Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste

Abstract

The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.



Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust

Abstract

Continuous addition of undesired effluents to the environment affects foliar surface of leaf, changes their morphology, stomata, photosynthetic pigments, and biochemical constituents which result in massive damage due to persistent nature of the pollutant. In persistent hostile environment, plants fail to grow and develop, and the effects are often extensive. In current study, landscape plants were exposed to different levels of road dust to analyze the effect on various photosynthetic pigments. Dry roadside sediments were collected through a vacuum pump and passed through filters to get fine particles less than 100 μm and sprinkled on Euphorbia milii (EM), Gardenia jasminoides (GJ), and Hibiscus rosa-sinensis (HRs) by using a hand pump, twice daily at T1 (control), T2, T3, and T4 (0, 2, 4, and 6 g/plant, respectively) for a period of 3 months in green house. Road sediment significantly reduces leaf pigments in landscape plants population and the effects were more severe in high level of dust deposition. Individual response of EM, GJ, and HRs to different levels of road dust was variable; however, road sediment significantly reduces leaf pigments at high dose of roadside dust deposition. EM plants exposed to 2 g/plant roadside dust showed higher chlorophyll-a, chlorophyll-b, total chlorophyll, chlorophyllide-b, and polar carotenoid contents as compared to GJ and HRs. Leaf chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and polar carotenoid contents of EM were higher than GJ and HRs in T3 and T4 treatments. However HRs showed significantly higher protochlorophyllide, chlorophyllide-a, and pheophytin-b contents of leaf in T4 group. EM was found as tolerant landscape plant followed by HRs. GJ was most vulnerable to road dust stress. Present study concludes that the entire biosynthesis of leaf pigments is in chain and interlinked together where effect of road dust on one pigment influences other pigments and their derivatives. Salient features of the present study provide useful evidence to estimate roadside dust as a major risk factor for plant pigments, and plants in green belt along roadside suffer retarded growth and fail to establish and develop.



Design and experimental investigations on six-stroke SI engine using acetylene with water injection

Abstract

In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NOx emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.