Abstract
Sevoflurane, an inhaled ether general anesthetic agent, exerts a variety of neurotoxic effects, including oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. However, the underlying molecular mechanisms remain to be elucidated. DJ-1 is a protein that exerts neuroprotective effects against different kinds of stress through multiple pathways. This study aimed to investigate the neuroprotective effects of DJ-1 against sevoflurane-induced neurotoxicity. Here, we found that sevoflurane treatment significantly increased DJ-1 expression in human neuroblastoma M17 cells in a dose-dependent manner at both the mRNA and protein levels. Interestingly, we found that overexpression of wild-type (WT) DJ-1 prevented sevoflurane-induced generation of reactive oxygen species (ROS) and nitric oxide (NO), deletion of reduced GSH, reduction of adenosine triphosphate (ATP), and mitochondrial membrane potential. Interestingly, we found that WT DJ-1 could inhibit sevoflurane-induced apoptosis by modulating the mitochondrial pathway. However, its "loss of function" mutation DJ-1(L166P) exacerbated sevoflurane-induced neurotoxicity in M17 cells. Our findings suggest that WT DJ-1 protects neuronal cells against sevoflurane-induced neurotoxicity.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.