Modern spatial navigation requires fluency with multiple representational formats, including visual scenes, signs, and words. These formats convey different information. Visual scenes are rich and specific but contain extraneous details. Arrows, as an example of signs, are schematic representations in which the extraneous details are eliminated, but analog spatial properties are preserved. Words eliminate all spatial information and convey spatial directions in a purely abstract form. How does the human brain compute spatial directions within and across these formats? To investigate this question, we conducted two experiments on men and women: a behavioral study that was preregistered and a neuroimaging study using multivoxel pattern analysis of fMRI data to uncover similarities and differences among representational formats. Participants in the behavioral study viewed spatial directions presented as images, schemas, or words (e.g., "left"), and responded to each trial, indicating whether the spatial direction was the same or different as the one viewed previously. They responded more quickly to schemas and words than images, despite the visual complexity of stimuli being matched. Participants in the fMRI study performed the same task but responded only to occasional catch trials. Spatial directions in images were decodable in the intraparietal sulcus bilaterally but were not in schemas and words. Spatial directions were also decodable between all three formats. These results suggest that intraparietal sulcus plays a role in calculating spatial directions in visual scenes, but this neural circuitry may be bypassed when the spatial directions are presented as schemas or words.
SIGNIFICANCE STATEMENT Human navigators encounter spatial directions in various formats: words ("turn left"), schematic signs (an arrow showing a left turn), and visual scenes (a road turning left). The brain must transform these spatial directions into a plan for action. Here, we investigate similarities and differences between neural representations of these formats. We found that bilateral intraparietal sulci represent spatial directions in visual scenes and across the three formats. We also found that participants respond quickest to schemas, then words, then images, suggesting that spatial directions in abstract formats are easier to interpret than concrete formats. These results support a model of spatial direction interpretation in which spatial directions are either computed for real world action or computed for efficient visual comparison.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.