Abstract
Bioconcentration of UV filters in organisms is an important indicator for the assessment of environmental hazards. However, bioconcentration testing rarely accounts for the influence of natural aquatic environmental factors. In order to better assess the ecological risk of organic UV filters (OUV-Fs) in an actual water environment, this study determined the influences of dissolved organic matter (DOM) (0, 1, 10, and 20 mg/L) and feeding (0, 0.5, 1, and 2% body weight/d) on bioconcentration of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) in various tissues of crucian carp (Carassius auratus). Moreover, oxidative stress in the fish liver caused by the OD-PABA was also investigated by measuring activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH) and malondialdehyde (MDA). The bioconcentration of OD-PABA in the fish tissues was significantly decreased with the presence of DOM indicating a reduction of OD-PABA bioavailability caused by DOM. The bioconcentration factors (BCFs) decreased by 28.00~50.93% in the muscle, 72.67~96.74% in the gill, 37.84~87.72% in the liver, and 10.32~79.38% in the kidney at different DOM concentrations compared to those of the non-DOM treatments. Significant changes in SOD, CAT, GST, GSH, and MDA levels were found in the DOM- and OD-PABA-alone treatments. However, there were no significant differences in the SOD, CAT, GST, and MDA levels found when co-exposure to OD-PABA and DOM. Feeding led to lower OD-PABA concentrations in the fish tissues, and the concentrations were decreased with increasing feeding ratios. BCFs in various tissues reduced by 39.75~72.52% in the muscle, 56.86~79.73% in the gill, 66.41~87.50% in the liver, and 75.88~89.10% in the kidney, respectively. In the unfed treatments, the levels of SOD and MDA were significantly higher than those of the fed ones while GST and GSH levels were remarkably inhibited indicating the enhanced effect of starvation to oxidative stress. There was no markedly alternation of the biomarker levels observed between different fed treatments. In conclusion, our study indicated that both DOM and feeding reduced bioconcentration of OD-PABA and alleviated oxidative stress to some extent in the crucian carp.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.