Abstract
Long noncoding RNAs (lncRNAs) have gained extensive attention in recent years, however, their effects on ultraviolet (UV) radiation-induced skin photodamage remain to be elucidated. In this study, we performed high-throughput RNA sequencing and comprehensive bioinformatics analyses to characterize the transcriptome profiles including lncRNAs and mRNAs in UVB-irradiated primary human dermal fibroblasts (HDFs) and to explore the roles of lncRNAs in photoaging. Quantitative reverse transcription-polymerase chain reaction amplification was performed to verify the differentially expressed genes. We subsequently found that knocking down of RP11-670E13.6, an upregulated lncRNA in UVB-irradiated HDFs, promoted a robust senescence phenotype, including increased numbers of the numbers of senescence-associated β-galactosidase-positive cells, decreased cell proliferation, accumulation of cells in G0/G1 phase, and a characteristic gene expression signature of senescent cells. In addition, western blot analysis showed that knocking down of RP11-670E13.6 activated the p16-pRB senescence pathway independent of the p53-p21 pathway. Therefore, we propose that RP11-670E13.6 may delay cellular senescence in UVB damaged HDFs through the p16-pRB pathway.
This article is protected by copyright. All rights reserved.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.