Αναζήτηση αυτού του ιστολογίου

Πέμπτη 16 Νοεμβρίου 2017

Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress

Abstract

Lead (Pb) stress adversely affects in planta nutrient homeostasis and metabolism when present at elevated concentration in the surrounding media. The present study was aimed at investigation of organic acid exudations, elemental contents, growth, and lipid peroxidation in two wild plants (Amaranthus viridis L. and Portulaca oleracea L.), exhibiting differential root to shoot Pb translocation, under Pb stress. Plants were placed in soil spiked with lead chloride (PbCl2) concentrations of 0, 15, 30, 45, or 60 mg Pb/kg soil, in rhizoboxes supplied with nylon nets around the roots. The plant mucilage taken from root surfaces, mirroring the rhizospheric solution, was analyzed for various organic acids. Lead stress resulted in a release of basified root exudates from both plants. Exudates of P. oleracea roots showed a higher pH. In both plants, the pH rising effect was diminished at the highest Pb treatment level. The exudation of citric acid, glutamic acid (in both plants), and fumaric acid (in P. oleracea only) was significantly increased with applied Pb levels. In both plant species, root and shoot Pb contents increased while nutrients (Ca, Mg, and K) decreased with increasing Pb treatment levels, predominantly in A. viridis. At 60 mg Pb/kg soil, shoot Na content of A. viridis was significantly higher as compared to untreated control. Higher Pb treatment levels decreased plant fresh and dry masses as well as the quantity of photosynthetic pigments due to enhanced levels of plant H2O2 and thiobarbituric acid reactive substances in both species. Photosynthetic, growth, and oxidative stress parameters were grouped into three distinct dendrogram sections depending on their similarities under Pb stress. A positive correlation was identified between Pb contents of studied plants and secretion of different organic acids. It is concluded that Pb stress significantly impaired the growth of A. viridis and P. oleracea as a result of nutritional ion imbalance, and the response was cultivar-specific and dependent on exogenous applied Pb levels. Differential lipid oxidation, uptake of nutrients (Ca, Mg, and K) and exudation of citric acid, fumaric acid, and glutamic acid could serve as suitable physiological indicators for adaptations of P. oleracea to Pb enriched environment. The findings may help in devising strategies for Pb stabilization to soil colloids.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.