Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have prolonged coronavirus disease 2019 (COVID-19) pandemic by escaping pre-existing immunity acquired by natural infection or vaccination. Elucidation of VOCs' mutation trends and evasion of neutralization is required to update current control measures. Mutations and the prevalence of VOCs were analyzed in the global immunization coverage rate context. Lentivirus-based pseudovirus neutralization analysis platforms for SARS-CoV-2 prototype strain (PS) and VOCs, containing Alpha, Beta, Gamma, Delta and Omicron, were constructed based on the spike protein of each variant and HEK 293T cell line expressing the hACE2 (human angiotensin-converting enzyme 2) receptor on the surface, and an eGFP reporter. Serum samples from 65 convalescent individuals and 20 WIBP-CorV vaccine recipients and four therapeutic monoclonal antibodies (mAbs) namely imdevimab, casirivimab, bamlanivima b, and etesevimab were used to evaluate the neutralization potency against the variants. Pseudovirus-based neutralization assay platforms for PS and VOCs were established, and multiplicity of infection (MOI) was the key factor influencing the assay result. Compared to PS, VOCs may enhance the infectivity of hACE2-293T cells. Except for Alpha, other VOCs escaped neutralization to varying degrees. Attributed to favorable and emerging mutations, the current pandemic Omicron variant of all VOCs demonstrated the most significant neutralization-escaping ability to the sera and mAbs. Compared with the PS pseudovirus, Omicron had 15.7-fold and 3.71-fold decreases in the NT50 value (the highest serum dilution corresponding to a neutralization rate of 50%); and correspondingly, 90% and 43% of immunization or convalescent serum samples lost their neutralizing activity against the Omicron variant, respectively. Therefore, SARS-CoV-2 has evolved persistently with a strong ability to escape neutr alization and prevailing against the established immune barrier. Our findings provide important clues to controlling the COVID-19 pandemic caused by new variants.
This article is protected by copyright. All rights reserved.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.