Abstract
The objective of this paper is to demonstrate an interdisciplinary strategy combining both engineering- and biology-based approaches for stormwater and wastewater treatment. The work involves a novel and environmentally friendly surface material that can withstand urban load over its design service life, allows preliminary treatment through filtration, and diverts water to the subsurface to conduct secondary treatment below the surface through phytoremediation via the extensive rooting systems of trees. The present study highlights an interdisciplinary low-impact development (LID) approach developed for a polluted industrial wastewater site, for a cleaner and greener environment. The LID system involves (i) rhizofiltration and phytoremediation methods for removing heavy metals and organic pollutants using a hybrid poplar and aspen species; (ii) porous infrastructure produced using industrial waste, referred to as geopolymer pavers; and (iii) use of Silva cells as a tree-friendly and load support system. The design of the pavers over the Silva cells is innovative as it can deal with rainwater runoff and urban transportation loads simultaneously. The proposed system has the ability to extract heavy metals that are common in urban runoff or domestic and industrial effluents thus preserving the ecosystem naturally. The test site is only 15 m2, but designed for a water-retention capacity of 2 m3 (roughly 1:100 year design volume draining a 10 × 10 m parking lot), and remediation levels for Cu and Zn are expected to reach 180 mg/kg dry weight and 1200 mg/kg dry weight, respectively.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.