Publication date: Available online 8 August 2018
Source: Journal of Photochemistry and Photobiology B: Biology
Author(s): Fanlei Kong, Zhihong Nie, Zhongpo Liu, Shibin Hou, Jiangfeng Ji
Abstract
The technique of anterior cervical corpectomy and fusion (ACCF) for strut grafting has become a widespread and actively applied for many cervical complaints including cervical degeneration of the intervertebral disks, cervical trauma, cancer, rheumatoid arthritis and multilevel cervical spondylotic diseases. To avoid the complications of the old techniques, the construct stability and long anterior screw-plate designs of the bone strut have been improved by using effective biomaterials. The nanostructured hydroxyapatite (HAp) incorporated with biocompatible polymer matrixes is an effective biomedical material and creating a functional properties applied for different tissue replacements such as dental, hips, knees, tendon and ligaments and tissue repair for maxillofacial reconstruction, stabilization of the jaw bone and spinal fusion. In the present investigation, we have successfully designed cylindrical nano titanium dioxide (n-TiO2) interbody fusion with anterior plate fixation. The n-TiO2 incorporated HAp/ Polyetheretherketone (PEEK) nanocomposite strut has a superior mechanical properties and larger contact area with high fusion rates as compared with the HAp/PEEK strut in the absence of n-TiO2 nanoparticles. It is highly able to provide appropriate strength and biological activity similar to the conventional titanium cage and also mainly it has been minimizes subsidence value. The synthesized novel material of n-TiO2 incorporated HAp/PEEK nanocomposite strut is scientifically given effective outcomes for fusion and reconstruction of the ACCF.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.