Abstract
Purpose
Patient-specific quantitative assessments of muscle mass and biomechanical musculoskeletal simulations require segmentation of the muscles from medical images. The objective of this work is to automate muscle segmentation from CT data of the hip and thigh.
Method
We propose a hierarchical multi-atlas method in which each hierarchy includes spatial normalization using simpler pre-segmented structures in order to reduce the inter-patient variability of more complex target structures.
Results
The proposed hierarchical method was evaluated with 19 muscles from 20 CT images of the hip and thigh using the manual segmentation by expert orthopedic surgeons as ground truth. The average symmetric surface distance was significantly reduced in the proposed method (1.53 mm) in comparison with the conventional method (2.65 mm).
Conclusion
We demonstrated that the proposed hierarchical multi-atlas method improved the accuracy of muscle segmentation from CT images, in which large inter-patient variability and insufficient contrast were involved.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.