Αναζήτηση αυτού του ιστολογίου

Πέμπτη 5 Οκτωβρίου 2017

Anti-tumor immunity via the superoxide-eosinophil axis induced by lipophilic component of Mycobacterium lypomannan

Abstract
Mycobacterium bovis Bacille Calmett–Guerin (BCG) has been shown to possess potent antitumor activity particularly in various animal models, while, the cellular and molecular mechanisms underlying its activity are not well understood. We found that lipomannan (BCG-LM), a lipophilic component of the mycobacterial cell envelope, specifically inhibits tumor growth and induces the infiltration of eosinophils at local tumor-invasion sites. In contrast, neither lipoarabinomannan (BCG-LAM) nor the cell wall of Mycobacterium bovis BCG (BCG-CW) exerted anti-tumor immunity. BCG-LM enhances cytotoxic activity of eosinophils via the increased production of superoxide. Global transcriptomic analyses of BCG-LM-pulsed DCs identified C-C motif ligand (CCL)5 as a crucial chemokine for the anti-tumor immunity induced by BCG-LM, indicating that CCL5 plays an important role for the accumulation of eosinophils in the tumor microenvironment. Furthermore, BCG-LM and memory Th2 cells exerted a synergetic effect on tumor progression by cooperatively enhancing the eosinophil function. Thus, this study revealed un-identified BCG-LM-mediated anti-tumor mechanism via superoxide produced by infiltrated eosinophils in the tumor microenvironment. Since BCG-LM activates this unique pathway, it may have potent therapeutic potential as immune-cell therapy for cancer patients.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.