With the improvement of citizens' risk perception ability and environmental protection awareness, social conflicts caused by environmental problems in large-scale construction projects are becoming more and more frequent. Traditional social risk prevention management has some defects in obtaining risk data, such as limited coverage, poor availability, and insufficient timeliness, which makes it impossible to realize effective early warning of social risks in the era of big data. This paper focuses on the three environments of diversification of stakeholders, risk media, and big data era. The evolution characteristics of the social risk of environmental damage of large-scale construction projects are analyzed from the four stages of incubation, outbreak, mitigation, and regression in ess ence. On this basis, a social risk early warning model is constructed, and the multicenter network governance mode of social risk of environmental damage in large-scale construction projects and practical social risk prevention strategies in different stages are put forward. Experiments show that the long short-term memory neural network model is effective and feasible for predicting the social risk trend of environmental damage of large-scale construction projects. Compared with other classical models, the long short-term memory model has the advantages of strong processing capability and high early warning accuracy for time-sensitive data and will have broad application prospects in the field of risk control research. By using the network governance framework and long short-term memory model, this paper studies the environmental mass events of large-scale construction projects on the risk early warning method, providing reference for the government to effectively prevent and con trol social risk of environmental damage of large-scale construction project in China.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.