Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urineAbstractThis article introduces a novel inkjet printing method for the fabrication of a microfluidic paper-based analytical device (μPADs) with improved analytical performance for colorimetric measurements. Firstly, a hydrophobic boundary was created by wax printing on chromatography paper. Then, chitosan (CHI), 3,3′,5,5'-Tetramethylbenzidine (TMB) and enzymatic mixture solvent (glucose oxidase (GOx) and horseradish peroxidase (HRP)) were sequentially printed in the sensing zone. Polyethylene glycol (PEG6000) was mixed with the bienzymatic solution to act as an enzyme stabilizer, forming the printable ink. The resulting μPADs exhibited a linear relationship between color intensity and glucose concentration from 0.0 25 mg/ml to 0 .5mg/ml. The detectable glucose concentration was in a clinically relevant range from 0.01 mg/ml to 4 mg/ml. The limit of detection (LOD) was achieved at 0.01 mg/ml. After 60-day storage under 4 °C, the color intensity at the testing zone retained over 80% of the original intensity. In addition, a smartphone application was developed for in situ colorimetric image processing, and the colorimetric analysis results were compared with those from the use of a scanner followed by processing using ImageJ. Furthermore, the development of this ink printing method also provides a point of care (POC) platform for other substances detection purposes. |
Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseasesAbstractChronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries. |
Organotropic drug delivery: Synthetic nanoparticles and extracellular vesiclesAbstractMost clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site. |
Polymers for extended-release administrationAbstractDeveloping strategies to deliver the required dose of therapeutics into target tissues and cell populations within the body is a principal aim of controlled release and drug delivery. Specifically, there is an interest in developing formulations that can achieve drug concentrations within the therapeutic window, for extended periods of time, with tunable release profiles, and with minimal complication and distress for the patient. To date, drug delivery systems have been developed to serve as depots, triggers, and carriers for therapeutics including small molecules, biologics, and cell-based therapies. Notably, the efficacy of these systems is intricately tied to the manner in which they are administered. For example, systemic and oral routes of administration are common, but both can result in rapid clearance from the organism. Towards this end, what formulation and administration route strategies are available to prolong the bioavailability of therapeutics? Here, we discuss historical and modern drug delivery systems, with the intention of exploring how properties including formulation, administration route and chemical structure influence the ability to achieve extended-release drug release profiles within the body. |
A quantitative approach for determining the role of geometrical constraints when shaping mesenchymal condensationsAbstractIn embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development. |
In situ three-dimensional printing for reparative and regenerative therapyAbstractThree-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future. |
A tissue chamber chip for assessing nanoparticle mobility in the extravascular spaceAbstractAlthough a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a 'Tissue Chamber' chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 μm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals. |
Hang on tight: reprogramming the cell with microstructural cuesAbstractCells interact intimately with complex microdomains in their extracellular matrix (ECM) and maintain a delicate balance of mechanical forces through mechanosensitive cellular components. Tissue injury results in acute degradation of the ECM and disruption of cell-ECM contacts, manifesting in loss of cytoskeletal tension, leading to pathological cell transformation and the onset of disease. Recently, microscale hydrogel constructs have been developed to provide cells with microdomains to form focal adhesion binding sites, which enable restoration of cytoskeletal tension. These synthetic anchors can recapitulate the complex 3D architecture of the native ECM to provide microtopographical cues. The mechanical deformation of proteins at the cell surface can activate signaling cascades to modulate downstream gene-level transcription, making this a unique materials-based approach for reprogramming cell behavior. An overview of the mechanisms underlying these mechanosensitive interactions in fibroblasts, stem and other cell types is provided to review their effects on cellular reprogramming. Recent investigations on the fabrication, functionalization and implementation of these materials and microtopographical features for drug testing and therapeutic applications are discussed. |
Investigation of parameters that determine Nano-DC vaccine transportAbstractEffective migration of dendritic cells into the lymphatic system organs is the prerequisite for a functional dendritic cell vaccine. We have previously developed a porous silicon microparticle (PSM)-based therapeutic dendritic cell vaccine (Nano-DC vaccine) where PSM serves both as the vehicle for antigen peptides and an adjuvant. Here, we analyzed parameters that determined dendritic cell uptake of PSM particles and Nano-DC vaccine accumulation in lymphatic tissues in a murine model of HER2-positive breast cancer. Our study revealed a positive correlation between sphericity of the PSM particles and their cellular uptake by circulating dendritic cells. In addition, the intravenously administered vaccines accumulated more in the spleens and inguinal lymph nodes, while the intradermally inoculated vaccines got enriched in the popliteal lymph nodes. Furthermore, mice with large tumors received more vaccines in the lymph nodes than those with small to medium size tumors. Information from this study will provide guidance on design and optimization of future therapeutic cancer vaccines. |
Mathematical modeling in cancer nanomedicine: a reviewAbstractCancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy. |
Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.