Αναζήτηση αυτού του ιστολογίου

Σάββατο 6 Οκτωβρίου 2018

Detecting drug-resistant tuberculosis in chest radiographs

Abstract

Purpose

Tuberculosis is a major global health threat claiming millions of lives each year. While the total number of tuberculosis cases has been decreasing over the last years, the rise of drug-resistant tuberculosis has reduced the chance of controlling the disease. The purpose is to implement a timely diagnosis of drug-resistant tuberculosis, which is essential to administering adequate treatment regimens and stopping the further transmission of drug-resistant tuberculosis.

Methods

A main tool for diagnosing tuberculosis is the conventional chest X-ray. We are investigating the possibility of discriminating automatically between drug-resistant and drug-sensitive tuberculosis in chest X-rays by means of image analysis and machine learning methods.

Results

For discriminating between drug-sensitive and drug-resistant tuberculosis, we achieve an area under the receiver operating characteristic curve (AUC) of up to 66%, using an artificial neural network in combination with a set of shape and texture features. We did not observe any significant difference in the results when including follow-up X-rays for each patient.

Conclusion

Our results suggest that a chest X-ray contains information about the likelihood of a drug-resistant tuberculosis infection, which can be exploited computationally. We therefore suggest to repeat the experiments of our pilot study on a larger set of chest X-rays.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.