Publication date: Available online 22 July 2018
Source: Journal of Photochemistry and Photobiology B: Biology
Author(s): Fengli Wang, Yan Xu, Chunmei Lv, Chunling Han, Yan Li
Abstract
Over the past decade, the implementation of the novel nanomaterials in the field of nanotechnology for the biomedical applications is essential for the comfort factors such as non-toxicity and biocompatibility in the human biological systems. In this context, a novel synthesis was worked out through bacterial species (citrobacter braakii) in the biofabrication of bioactive gold nanoparticles (Au NPs) for the wound healing management. The biosynthesized Au NPs were further modified and improved its compatibility with polyethylene glycol (PEG) and polycaprolactone (PCL) for formed as Au-PEG/PCL nanocomposites to extent the activity in wound healing application. The combination of bioactive nanoparticles with biocompatible polymeric substances has been upsurges the activity of nanoparticles due to the strong interaction of polymers. The biofabricated Au NPs and its nanocomposites were characterized using UV–Vis, FT-IR, XRD, DLS and TEM studies. Further, the prepared materials were tested in a wound healing model of rat with the wound of 22 mm size. The found results are demonstrated that the improved materials are highly active in growth of keratinocytes proliferation and simultaneously reduce scar formation. After 15 days observations, the wound were almost completely healed by the developed Au- PEG/PCL nanocomposites material which was confirmed by Masson's Trichrome staining histological images and antibacterial efficacy was displayed by the CLSM images. Notably, polymeric Au-PEG/PCL nanocomposites showed no inflammation on the wounded portion and internal implantation on rats thus evidencing it as a safe and biologically very active wound healing agent.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.