Abstract
The role of extracellular DNA (eDNA) in biofilm in heavy metal complexation has been little reported. In this study, the interaction between the extracellular fraction of unsaturated biofilms and Cu2+ was studied using random amplified polymorphic DNA (RAPD) and synchrotron-based X-ray absorption spectroscopy (XAS) analyses. Under Cu2+ stress, the amount of eDNA was about 10-fold higher than the treatment without Cu2+ stress, which was substantially more than the amount of intracellular DNA (iDNA) present in the biofilm. The eDNA content increased significantly under Cu2+ stress and higher eDNA contents were found in colloidal extracellular polymeric substances (EPS) than in capsular EPS in Luria-Bertani medium. It was found that the composition of eDNA was distinctly changed under conditions of Cu2+ stress compared with the treatments without Cu2+ treatments, with specific eDNA bands appearing under Cu2+ treatments as revealed by RAPD analyses. X-ray absorption fine structure (XAFS) analysis assessing the molecular speciation of copper showed that copper in the secreted eDNA mainly existed as species resembling Cu3(PO4)2, followed by Cu-citrate species. This study investigated the interaction between copper and eDNA in unsaturated Pseudomonas putida CZ1 biofilms. Potential function of eDNA in biofilms under Cu2+ stress was found.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.