Abstract
Low-pressure (LP) UV treatment after chlorine disinfection was associated with enhanced formation of trichloronitromethane (TCNM), a halonitromethane disinfection by-product (DBP), due to the chlorination of tryptophan. Evidence was found that the concentration of TCNM from tryptophan increased quickly to the maximum for the first instance. Moreover, the increase of TCNM under UV exceeded 10 times than under dark. Then, it was found to have an obvious decrease in the formation of TCNM, even finally hardly disappear. In order to elucidate reasons for this phenomenon, the effects of light intensity, initial tryptophan concentration, free chlorine concentration, pH, and tert-butanol (TBA) on the formation of TCNM were investigated under UV/chlorine treatment. Finally, the effects of tryptophan on the formation of TCNM and the direct photodegradation of TCNM under LP UV irradiation were studied for analyzing the possible pathways of TCNM formation from amino acid. Since amino acids are very common in water sources, further research into chemical oxidation of these species by LP UV and chlorine is recommended. It can help us to find the precursors of TCNM formation and reduce the risk of TCNM formation for drinking water and wastewater utilities.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.