Abstract
In order to degrade the macromolecular pollutant of humic acid, the powder ordered mesoporous carbon (POMC, average pore diameter 4.29 nm) was first applied for preparing the granular OMC (GOMC, Φ × H = 4 × 3–6 mm) as electrodes in a continuous three-dimensional (3D) electrochemical system. The POMC was synthesized by hard-templating method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size distribution, N2 adsorption/desorption technology, and Fourier-transform infrared (FT-IR). The effects of electrochemical degradation parameters, such as current and hydraulic retention time (HRT), were investigated, and the degradation mechanism of HA was explored as well. The results indicated that the degradation efficiency of HA, chemical oxygen demand (COD), and total organic carbon (TOC) reached 95.3, 86.2, and 62.7%, respectively, under initial HA of 100 mg/L, current of 0.2 A, and HRT of 130 min. The detection of electron paramagnetic resonance (EPR) showed that plenty of ˙OH was generated on GOMC electrodes, which made the 3D system more effective than the conventional two-dimensional (2D) system. The cyclic voltammetry curves indicated that the reactions of HA on the OMC materials surface included both direct oxidation and direct reduction.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.