Αναζήτηση αυτού του ιστολογίου

Δευτέρα 9 Απριλίου 2018

Multilevel Regression and Poststratification: A Modelling Approach to Estimating Population Quantities From Highly Selected Survey Samples

Abstract
Large-scale population health studies face increasing difficulties in recruiting representative samples of participants. Non-participation, item non-response and attrition, when follow-up is involved, often result in highly selected samples even in well-designed studies. We aimed to assess the potential value of multilevel regression and poststratification, a method previously used to successfully forecast US presidential election results, for addressing biases due to non-participation in the estimation of population descriptive quantities in large cohort studies. The investigation was performed as an extensive case study using a large national health survey of Australian males, the Ten to Men study. Analyses were performed in the Bayesian computational package RStan. Results showed greater consistency and precision across population subsets of varying sizes, when compared with estimates obtained using conventional survey sampling weights. Estimates for smaller population subsets exhibited a greater degree of shrinkage towards the national estimate. Multilevel regression and poststratification provides a promising analytic approach to addressing potential participation bias in the estimation of population descriptive quantities from large-scale health surveys and cohort studies.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.