Abstract
Upland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha−1 combined with the application of T. asperellum pool or PGPM mixture increased 54% in root dry matter biomass and 35 and 65% in shoot and root lengths, respectively; it also suppressed 99% of rice blast severity. In E2, shoot and root dry matter biomass and length, photosynthetic rate, water use efficiency, total soluble sugar, and chloroplastidic pigments were superior in BRS Primavera CL seedlings treated with 2 Si t ha−1 and T. asperellum pool or PGPM mixture. Higher salicilic and jasmonic acid levels were found in seedlings treated with Si and T. asperellum pool, individually. These physiological characteristics may explain, in part, the higher vigor of upland rice seedlings promoted by the synergistic effect between silicate fertilization and beneficial microorganisms.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.