Abstract
Purpose
Effective and safe performance of cardiovascular interventions requires excellent catheter/guidewire manipulation skills. These skills are currently mainly gained through an apprenticeship on real patients, which may not be safe or cost-effective. Computer simulation offers an alternative for core skills training. However, replicating the physical behaviour of real instruments navigated through blood vessels is a challenging task.
Methods
We have developed VCSim3—a virtual reality simulator for cardiovascular interventions. The simulator leverages an inextensible Cosserat rod to model virtual catheters and guidewires. Their mechanical properties were optimized with respect to their real counterparts scanned in a silicone phantom using X-ray CT imaging. The instruments are manipulated via a VSP haptic device. Supporting solutions such as fluoroscopic visualization, contrast flow propagation, cardiac motion, balloon inflation, and stent deployment, enable performing a complete angioplasty procedure.
Results
We present detailed results of simulation accuracy of the virtual instruments, along with their computational performance. In addition, the results of a preliminary face and content validation study conveyed on a group of 17 interventional radiologists are given.
Conclusions
VR simulation of cardiovascular procedure can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. VCSim3 is still a prototype, yet the initial results indicate that it provides promising foundations for further development.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.