Αναζήτηση αυτού του ιστολογίου

Τετάρτη 19 Σεπτεμβρίου 2018

Motion Extrapolation for Eye Movements Predicts Perceived Motion-Induced Position Shifts

Transmission delays in the nervous system pose challenges for the accurate localization of moving objects as the brain must rely on outdated information to determine their position in space. Acting effectively in the present requires that the brain compensates not only for the time lost in the transmission and processing of sensory information, but also for the expected time that will be spent preparing and executing motor programs. Failure to account for these delays will result in the mislocalization and mistargeting of moving objects. In the visuomotor system, where sensory and motor processes are tightly coupled, this predicts that the perceived position of an object should be related to the latency of saccadic eye movements aimed at it. Here we use the flash-grab effect, a mislocalization of briefly flashed stimuli in the direction of a reversing moving background, to induce shifts of perceived visual position in human observers (male and female). We find a linear relationship between saccade latency and perceived position shift, challenging the classic dissociation between "vision for action" and "vision for perception" for tasks of this kind and showing that oculomotor position representations are either shared with or tightly coupled to perceptual position representations. Altogether, we show that the visual system uses both the spatial and temporal characteristics of an upcoming saccade to localize visual objects for both action and perception.

SIGNIFICANCE STATEMENT Accurately localizing moving objects is a computational challenge for the brain due to the inevitable delays that result from neural transmission. To solve this, the brain might implement motion extrapolation, predicting where an object ought to be at the present moment. Here, we use the flash-grab effect to induce perceptual position shifts and show that the latency of imminent saccades predicts the perceived position of the objects they target. This counterintuitive finding is important because it not only shows that motion extrapolation mechanisms indeed work to reduce the behavioral impact of neural transmission delays in the human brain, but also that these mechanisms are closely matched in the perceptual and oculomotor systems.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.