Αναζήτηση αυτού του ιστολογίου

Δευτέρα 26 Φεβρουαρίου 2018

Sediment evidence of industrial leakage-induced asynchronous changes in polycyclic aromatic hydrocarbons and trace metals from a sub-trophic lake, southwest China

Abstract

It has been well established that regional patterns of atmosphere-borne polycyclic aromatic hydrocarbons (PAHs) and trace metals were predominantly associated with the trajectory of socio-economic development; however, they could be potentially modulated by anthropogenic fingerprint of local sources such as industrial spill. Here, we established historical pollution data of both PAHs and trace metals from a well-dated sediment core from Yangzong Lake of Southwest China, which experienced a severe tailing leakage accident derived from a zinc concentrate smelting plant in 2007, aiming to evaluate the heterogeneity in their temporal trajectories and their sources of contamination in the context of regional deposition patterns. Sedimentary records show that the concentrations and fluxes of both PAHs and trace metals remained a consistently low level before the 1950s. An increasing trend and the synchronous changes of both PAHs and trace metals during ~ 1950–2002 were well consistent with the temporal pattern of socio-economic development in western China, with coal combustion and smelting industries as the main sources of contamination in this region. However, arsenic (As) and PAHs exhibited a concurrent spike for the period of ~ 2007–2013, contrasting strongly to the regional pattern of these contaminants. The modern concentrations of As revealed a 5- to 14-fold increase over the pre-1950 level, with the contemporary concentrations of PAHs rising by ~ 10–14 times. The sediment records reveal that local fingerprints of smelting activities in the catchment of Yangzong Lake have overridden the temporary pattern of regional atmosphere-borne As and PAHs over the last decade. This highlights the important role of local pollution sources in modulating or even overriding the regional pattern of anthropogenic contamination in highly impacted systems.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.