Αναζήτηση αυτού του ιστολογίου

Τετάρτη 3 Ιανουαρίου 2018

Gliotransmission: Beyond Black-and-White

Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca2+-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca2+ elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca2+ release pathway (IP3R2) removes all the sources for Ca2+-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca2+ signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions.

Dual Perspectives Companion Paper: Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions, by Todd A. Fiacco and Ken D. McCarthy



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.